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Among a variety of doubly bonded compounds of group-14
metallic elements (R2M)MR2; M ) Si, Ge, Sn),1 very few
permetallacycloalkenes have been isolated and characterized,2-6

and unique chemistry of their endocyclic metal-metal double
bonds needs to be investigated. We have synthesized the first
stable cyclotetrasilene, hexakis(tert-butyldimethylsilyl)cyclotet-
rasilene (1), and found an unprecedented interconversion between
1 and the corresponding skeletal isomer, hexakis(tert-butyl-
dimethylsilyl)bicyclo[1.1.0]tetrasilane (2) (eq 1).2 Stable cyclo-

trigermene derivatives,5a which have been prepared by the
reactions of GeCl2-dioxane with t-Bu3SiNa and t-Bu3GeLi,
cyclotrigermenium ions,5b-d and a cyclotrigermenyl radical6 have
been synthesized within a short time of one another. However,
the silicon analogues of cyclopropene have not been known to
date, probably because of the unavailability of the functional
silylenes as a reagent. We report herein the synthesis and
characterization of the first stable cyclotrisilene, 1-tris(tert-
butyldimethylsilyl)silyl-2,3,3-tris(tert-butyldimethylsilyl)cyclo-
trisilene (3, R ) t-BuMe2Si), by a reduction of 1,1-dibromo-3-
(tert-butyl)-2,2-di(tert-butyldimethylsilyl)-1-chloro-3,3-di-
methyltrisilane (4) with potassium graphite (KC8) in THF. The
major product of reduction of4 depends significantly on the
reaction conditions; a reaction of4 with sodium metal in toluene
did not give3 but 1 in good yield. Interestingly, the reaction of
3 with carbon tetrachloride gave the corresponding 1,2-dichlori-
nated cyclotrisilane in a trans-addition manner.

Cyclotrisilene3 was obtained in good yield by the following
process (eq 2): To a suspension of KC8 (8.6 mmol) in THF (15

mL) was added a solution of4 (0.99 mmol) in THF (10 mL) at
-78 °C.7 The solution was then stirred overnight at room
temperature. Removal of the resulting salt and graphite by
filtration and evaporation of solvents in vacuo gave a dark orange
solid, which contained3 in 65% yield together with tris(tert-
butyldimethylsilyl)chlorosilane as the sole byproduct as deter-
mined by NMR. After removal of the chlorosilane by distillation,
recrystallization from pentane gave pure3 as dark red crystals in
11%.8 The structure of3 was determined by MS and1H, 13C,
and29Si NMR spectroscopies as well as the product analysis of
a reaction with carbon tetrachloride (vide infra). Cyclotrisilene3
was air-sensitive similar to other cyclic and acyclic tetrasilyl-
disilenes; the dark red color disappeared immediately when a
solution of3 was exposed to air.

It is interesting to compare the UV-vis spectra of3 and
cyclotetrasilene1 in 3-methylpentane. The absorption maxima
of 3 were observed at 482 (ε 2600) and 401 nm (ε 1300), which
were red shifted from those for1 (λmax/nm (ε): 465 (6800) and
359 (1060))2 consistent with the greater ring strain in3.

Two 29Si NMR resonances of the three-coordinated silicon
atoms (δ(Siu)) in 3 appeared at+81.9 (t-BuMe2Si-Sid) and+99.8
ppm ((t-BuMe2Si)3Si-Sid),9 which are significantly high-field
shifted relative to those for the acyclic tetrasilyldisilenes (142-
154 ppm)10 and 1 (160.4 ppm).2a,11 The tendency of theδ(Siu)
values among the corresponding tetrasilyldisilene,3, and1 is quite
parallel to that of the13C NMR chemical shifts of the unsaturated
carbons (δ(Cu)) among ethylene, cyclopropene, and cyclobutene;13

the high-field shift ofδ(Siu) of 3 andδ(Cu) of cyclopropene would
have the same origin.

Recently, we have found that tetrasilyldisilenes readily react
with carbon tetrachloride to give the corresponding 2,3-dichlo-
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rotetrasilanes through chlorine abstraction of the tetrasilyldi-
silenes.14 Expectedly, a reaction of3 with an excess amount of
carbon tetrachloride completed within 1 min even at-70 °C to
afford the correspondingtrans-1,2-dichloro-1-tris(tert-butyldi-
methylsilyl)silyl-2,3,3-tris(tert-butyldimethylsilyl)cyclotrisilane (5)
quantitatively without cleavage of the Si-Si single bonds in the
ring (eq 3).15 The X-ray analysis of a single crystal of5 disclosed
that the two chlorine atoms were arranged in a trans fashion as
shown in Figure 1.16,17 The formation of5 from 3 confirms the
three-membered-ring structure and the existence of an endocyclic
silicon-silicon double bond in3.

The mechanism of the formation of3 by the reductive coupling
of 4 remains open at present. A possible and attractive mechanism
is the production of the corresponding disilyne, (t-BuMe2Si)3SiSit
SiSi(SiMe2Bu-t)3, through the reductive coupling followed by the
1,2-migration of a (t-BuMe2Si)3Si group to give the corresponding
disilavinylidene, [(t-BuMe2Si)3Si]2SidSi:, which rearranges to3
through intramolecular silylene insertion into a Si-Si bond.20

The major product of the reduction of4 depended remarkably

on the reaction conditions. Thus, treatment of4 with sodium metal
in toluene at room temperature gave cyclotetrasilene1 in 64%
yield without formation of3 (eq 4). The yield of1 formed by

this reaction is much higher than that by our previous method,
i.e. the reductive cross coupling of 2,2-dibromo-1,3-di-tert-butyl-
1,1,3,3-tetramethyltrisilane and 2,2,3,3-tetrabromo-1,4-di-tert-
butyl-1,1,4,4-tetramethyltetrasilane.2a The reduction of3 with
sodium provides an advantageous method for preparation of1.
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Figure 1. ORTEP drawing of trans-1,2-dichlorocyclotrisilane (5).
Hydrogen atoms were omitted for clarity. Selected bond lengths (Å):
Si1-Cl1, 2.121(2); Si2-Cl2, 2.097(2); Si1-Si2, 2.350(2); Si1-Si3,
2.404(1); Si2-Si3, 2.380(2); Si1-Si4, 2.409(1); Si2-Si8, 2.363(2); Si3-
Si9, 2.397(2); Si3-Si10, 2.398(2). Selected bond angles (deg): Cl1-
Si1-Si2, 98.34(6); Cl2-Si2-Si1, 119.02(6); Si1-Si2-Si3, 61.08(4);
Si2-Si1-Si3, 60.07(4); Si1-Si3-Si2, 58.85(4); Si2-Si1-Si4,
141.46(6); Si3-Si1-Si4, 141.33(6); Si1-Si2-Si8, 126.33(6); Si3-Si2-
Si8, 136.91(6).
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